Journal of Information Display (Apr 2019)

Full-color computational holographic near-eye display

  • Seyedmahdi Kazempourradi,
  • Erdem Ulusoy,
  • Hakan Urey

DOI
https://doi.org/10.1080/15980316.2019.1606859
Journal volume & issue
Vol. 20, no. 2
pp. 45 – 59

Abstract

Read online

Near-eye displays (NEDs) are an excellent candidate for the future of augmented reality. Conventional micro-display based NED designs mostly provide stereoscopic 3D experience, which leads to visual discomfort due to vergence-accommodation conflict. Computational holographic near-eye displays (HNEDs) can simultaneously provide wide FOV, retinal resolution, attractive form-factor, and natural depth cues including accommodation. In HNEDs, computer-generated holograms (CGHs) are displayed on a spatial light modulators (SLMs). We propose a CGH computation algorithm that applies to arbitrary paraxial optical architectures; where the SLM illumination beam can be collimated, converging or diverging, and the SLM image as seen by the eye box plane may form at an arbitrary location, and can be virtual or real. Our CGH computation procedure eliminates speckle noise, which is observed in all other laser-based displays, and chromatic aberrations resulting from the light sources and the optics. Our proof-of-concept experiments demonstrate that HNEDs with simple optical architectures can deliver natural 3D images within a wide FOV (70 degrees) at retinal resolution (30 cycles-per-degree), exceeding 4000 resolvable pixels on a line using a printed binary mask. With the advances in SLM technology, HNEDs can realize the ultimate personalized display, meeting the demand of emerging augmented and virtual reality applications.

Keywords