Scientific Reports (Aug 2024)

Selective nanosecond laser removal of retinal pigment epithelium for cell therapy

  • Van Phuc Nguyen,
  • Athanasios J. Karoukis,
  • Justin Hu,
  • Zhuying Wei,
  • Dongshan Yang,
  • Abigail T. Fahim,
  • Xueding Wang,
  • Yannis M. Paulus

DOI
https://doi.org/10.1038/s41598-024-69917-z
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 18

Abstract

Read online

Abstract Retinal pigment epithelial (RPE) cells play a crucial role in the health of the retina, and their dysfunction is associated with various ocular diseases. The transplantation of RPE cells has been proposed as a potential treatment for numerous degenerative diseases, including geographic atrophy from macular degeneration. However, current models to induce RPE damage in animal models prior to transplantation involve mechanical scraping, chemical administration, or laser photocoagulation techniques, which can damage the overlying neurosensory retina. This study aims to investigate the feasibility and efficacy of nanosecond duration laser treatment to safely remove large areas of RPE cells without causing damage to the adjacent tissue or affecting the retinal architecture. Twelve pigmented rabbits were treated with a nanosecond laser on each eye at a laser energy ranging from 200 to 800 nJ with a treated area of 5 × 5 mm2. Human induced pluripotent stem cells-differentiated to RPE (hiPSC-RPE) cells labeled with indocyanine green (ICG), an FDA approved dye, were transplanted subretinally into the damaged RPE areas at day 14 post-laser treatment. The RPE atrophy and hiPSC-RPE cell survival was evaluated and monitored over a period of 14 days using color photography, fluorescein angiography (FA), photoacoustic microscopy (PAM), and optical coherence tomography (OCT) imaging. All treated eyes demonstrated focal RPE loss with a success rate of 100%. The injured RPE layers and the transplanted hiPSC-RPE cells were visualized in three dimensions using PAM and OCT. By performing PAM at an optical wavelength of 700 nm, the location of hiPSC-RPE cells were identified and distinguished from the surrounding RPE cells, and the induced PA signal increased up to 18 times. Immunohistochemistry results confirmed the grafted hiPSC-RPE replaced regions of RPE damage. This novel technique has the potential to serve as an animal model of RPE degeneration, to improve models of RPE transplantation, and may help accelerate translation of this therapeutic strategy for clinical use.