Categories and General Algebraic Structures with Applications (Jul 2018)
Total graph of a $0$-distributive lattice
Abstract
Let £ be a $0$-distributive lattice with the least element $0$, the greatest element $1$, and ${rm Z}(£)$ its set of zero-divisors. In this paper, we introduce the total graph of £, denoted by ${rm T}(G (£))$. It is the graph with all elements of £ as vertices, and for distinct $x, y in £$, the vertices $x$ and $y$ are adjacent if and only if $x vee y in {rm Z}(£)$. The basic properties of the graph ${rm T}(G (£))$ and its subgraphs are studied. We investigate the properties of the total graph of $0$-distributive lattices as diameter, girth, clique number, radius, and the independence number.