Energies (Sep 2019)

Wake Characteristics and Power Performance of a Drag-Driven in-Bank Vertical Axis Hydrokinetic Turbine

  • Jiyong Lee,
  • Mirko Musa,
  • Chris Feist,
  • Jinjin Gao,
  • Lian Shen,
  • and Michele Guala

DOI
https://doi.org/10.3390/en12193611
Journal volume & issue
Vol. 12, no. 19
p. 3611

Abstract

Read online

Preliminary design of a new installation concept of a drag-driven vertical axis hydrokinetic turbine is presented. The device consists of a three-bladed, wheel-shaped, turbine partially embedded in relatively shallow channel streambanks. It is envisioned to be installed along the outer banks of meandering rivers, where the flow velocity is increased, to maximize energy extraction. To test its applicability in natural streams, flume experiments were conducted to measure velocity around the turbine and power performance using Acoustic Doppler Velocimetry and a controlled motor drive coupled with a torque transducer. The experiment results comprise the power coefficient, the spatial evolution of the mean velocity deficit, and a description of the flow structures generated by the turbine and responsible for the unsteadiness of the wake flow. Applying a triple decomposition on the Reynolds stresses, we identify the dominant contribution to such unsteadiness to be strongly associated with the blade passing frequency.

Keywords