Journal of Innovative Optical Health Sciences (Mar 2019)
Handheld diffuse optical breast scanner probe for cross-sectional imaging of breast tissue
Abstract
Diffuse optical spectroscopy is a relatively new, noninvasive and nonionizing technique for breast cancer diagnosis. In the present study, we have introduced a novel handheld diffuse optical breast scan (DOB-Scan) probe to measure optical properties of the breast in vivo and create functional and compositional images of the tissue. In addition, the probe gives more information about breast tissue’s constituents, which helps distinguish a healthy and cancerous tissue. Two symmetrical light sources, each including four different wavelengths, are used to illuminate the breast tissue. A high-resolution linear array detector measures the intensity of the back-scattered photons at different radial destinations from the illumination sources on the surface of the breast tissue, and a unique image reconstruction algorithm is used to create four cross-sectional images for four different wavelengths. Different from fiber optic-based illumination techniques, the proposed method in this paper integrates multi-wavelength light-emitting diodes to act as pencil beam sources into a scattering medium like breast tissue. This unique design and its compact structure reduce the complexity, size and cost of a potential probe. Although the introduced technique miniaturizes the probe, this study points to the reliability of this technique in the phantom study and clinical breast imaging. We have received ethical approval to test the DOB-Scan probe on patients and we are currently testing the DOB-Scan probe on subjects who are diagnosed with breast cancer.
Keywords