Current Research in Food Science (Jan 2023)
The fat accumulation promotion effects of dihydrxytetraphenylmethane and its underlying mechanisms via transcriptome analysis
Abstract
Dihydrxytetraphenylmethane, also known as Bisphenol BP (BPBP), has been increasingly used in industrial production and more frequently detected in the environment as an alternative plasticizer of BPA. However, there are no reports about BPBP in food safety or its effects on cellular lipogenesis. The purpose of this research was to investigate the influence and potential mechanisms of BPBP on adipogenesis in 3T3-L1 cells. Cells were treated with 4 concentrations (0.01, 0.1, 1, and 10 μM) of BPBP and the results showed that treatment with at low concentrations (0.01 μM) promoted cell fat differentiation and triglyceride accumulation. RNA-seq data showed that a total of 370 differentially expressed genes between control and the low-dose BPBP-treated group were determined, including 227 upregulated genes and 143 downregulated genes. Some key genes related to adipocyte differentiation and adipogenesis were significantly enriched after BPBP treatment, including PPAR-γ, Adipoq, Nr1h3 and Plin1. Pathway analyses suggest that the activation of PPAR-γ signaling pathway may be key for BPBP to promote adipocyte differentiation and fat accumulation. Our work provides evidence for the potential obesogenic effect of BPBP and may call for further research on the safety of the chemical in food products.