Research and Reports in Tropical Medicine (Jun 2012)

The detection and treatment of human African trypanosomiasis

  • Bouteille B,
  • Buguet A

Journal volume & issue
Vol. 2012, no. default
pp. 35 – 45

Abstract

Read online

Bernard Bouteille,1 Alain Buguet21Laboratory of Parasitology, Dupuytren University Hospital of Limoges, France; 2Polyclinic Marie-Louise Poto-Djembo, Pointe-Noire, CongoAbstract: Human African trypanosomiasis (HAT) is caused by the injection of Trypanosoma brucei (T. b.) gambiense or T. b. rhodesiense by Glossina, the tsetse fly. Three historical eras followed the exclusive clinical approach of the 19th century. At the turn of the century, the “initial research” era was initiated because of the dramatic spread of HAT throughout intertropical Africa, and scientists discovered the agent and its vector. Two entities, recurrent fever and sleeping sickness, were then considered a continuum between hemolymphatic stage 1 and meningoencephalitic stage 2. Treatments were developed. Soon after World War I, specific services and mobile teams were created, initiating the “epidemiological” era, during which populations were visited, screened, and treated. As a result, by 1960, annual new cases were rare. New mass screening and staging tools were then developed in a third, “modern” era, especially to counter a new epidemic wave. Currently, diagnosis still relies on microscopic detection of trypanosomes without (wet and thick blood films) or with concentration techniques (capillary tube centrifugation, miniature anion-exchange centrifugation technique). Staging is a vital step.Stage 1 patients are treated on site with pentamidine or suramin. However, stage 2 patients are treated in specialized facilities, using drugs that are highly toxic and/or that require complex administration procedures (melarsoprol, eflornithine, or nifurtimox-eflornithine combination therapy). Suramin and melarsoprol are the only medications active against Rhodesian HAT. Staging still relies on cerebrospinal fluid examination for trypanosome detection and white blood cell counts: stage 1, absence of trypanosomes, white blood cell counts ≤ 5/µL; stage 2, presence of trypanosomes, white blood cell counts ≥ 20/µL; T. b. gambiense HAT intermediate stage, between these still controversial thresholds. Our group has proposed the use of noninvasive ambulatory polysomnography to identify sleep–wake abnormalities characteristic of stage 2 of the disease. Only patients with abnormal sleep–wake patterns would then undergo confirmative lumbar puncture.Keywords: human African trypanosomiasis, sleeping sickness, Trypanosoma brucei gambiense, Trypanosoma brucei rhodesiense, diagnosis, lumbar puncture, polysomnography, treatment