Advances in Environmental Technology (Jan 2018)

Modeling studies for adsorption of phenol and co-pollutants onto granular activated carbon prepared from olive oil industrial waste

  • Gehan Sharaf,
  • Ezzat Abdel-Galil,
  • Yasser El-eryan

DOI
https://doi.org/10.22104/aet.2018.2226.1112
Journal volume & issue
Vol. 4, no. 1
pp. 23 – 40

Abstract

Read online

Granular activated carbon (OSAC) which was derived from olive oil industrial solid waste was chemically activated with different concentrations of phosphoric acid. OSAC-materials were evaluated for their ability to remove phenol from aqueous solution in a batch technique. Adsorption isotherms were determined and modeled with five linear Langmuir forms, namely the Freundlich, Elovich, Temkin, Kiselev and Hill-de Boer models. The experimental data for the adsorption of phenol onto OSAM-materials were fitted well with the Langmuir-1 and 2, Freundlich, Kiselev and Hill-de Boer models. Adsorption was carried out on energetically different sites as localized monolayer adsorption and was an exothermic process. The uptake of phenol onto OSAC increased in the following order: OSAC-80%> OSAC-70%> OSAC-60%; the maximum adsorption capacities of phenol were found to be 114.416, 125.628 and 262.467 mg/g onto OSAC-60%, OSAC-70% and OSAC-80%, respectively. On the other hand, OSAC-80% was used as a good adsorbent for the removal of phenol and Cd2+ as co-pollutants from waste aqueous solutions. 80.25% of phenol and 50.66% of Cd2+ can be simultaneously removed by OSAC-80%.

Keywords