Polymers (May 2022)

Defining the Collapse Point in Colloidal Unimolecular Polymer (CUP) Formation

  • Ashish Zore,
  • Peng Geng,
  • Yuwei Zhang,
  • Michael R. Van De Mark

DOI
https://doi.org/10.3390/polym14091909
Journal volume & issue
Vol. 14, no. 9
p. 1909

Abstract

Read online

Colloidal unimolecular polymer (CUP) particles were made using polymers with different ratios of hydrophobic and hydrophilic monomers via a self-organization process known as water reduction. The water-reduction process and the collapse of the polymer chain to form a CUP were tracked using viscosity measurements as a function of composition. A vibration viscometer, which allowed for viscosity measurement as the water was being added during the water-reduction process, was utilized. The protocol was optimized and tested for factors such as temperature control, loss of material, measurement stability while stirring, and changes in the solution volume with the addition of water. The resulting viscosity curve provided the composition of Tetrahydrofuran (THF)/water mixture that triggers the collapse of a polymer chain into a particle. Hansen as well as dielectric parameters were related to the polymer composition and percentage v/v of THF/water mixture at the collapse point. It was observed that the collapse of the polymer chain occurred when the water/THF composition was at a water volume of between 53.8 to 59.3% in the solvent mixture.

Keywords