Frontiers in Aging Neuroscience (Oct 2020)

GLT-1 Knockdown Inhibits Ceftriaxone-Mediated Improvements on Cognitive Deficits, and GLT-1 and xCT Expression and Activity in APP/PS1 AD Mice

  • JunXia Gao,
  • LiZhe Liu,
  • Chao Liu,
  • ShuJuan Fan,
  • LiRong Liu,
  • ShuFeng Liu,
  • Xiao-Hui Xian,
  • Wen-Bin Li

DOI
https://doi.org/10.3389/fnagi.2020.580772
Journal volume & issue
Vol. 12

Abstract

Read online

ObjectiveGlutamate transporter-1 (GLT-1) and system xc– mediate glutamate uptake and release, respectively. Ceftriaxone has been reported to upregulate GLT-1 expression and improve cognitive decline in APP/PS1 mice. The aim of the present study was to elucidate the role of GLT-1 in ceftriaxone-mediated improvement on cognitive deficits and associated changes in xCT (catalytic subunit of system xc–) expression and activity using GLT-1 knockdown APP/PS1 mice.MethodsGLT-1 knockdown (GLT-1±) mice were generated in C57BL/6J mice using the CRISPR/Cas9 technique and crossed to APP/PS1 mice to generate GLT-1±APP/PS1 mice. The cognition was evaluated by novel object recognition and Morris water maze tests. GLT-1 and xCT expression, GLT-1 uptake for glutamate, and glutathione levels of hippocampus were assayed using Western blot and immunohistochemistry, 3H-glutamate, and glutathione assay kit, respectively.ResultsIn comparison with wild-type mice, APP/PS1 mice exhibited significant cognitive deficits, represented with poor performance in novel object recognition and Morris water maze tests, downregulated GLT-1 expression and glutamate uptake. Ceftriaxone treatment significantly improved the above impairments in APP/PS1 mice, but had negligible impact in GLT-1±APP/PS1 mice. The xCT expression increased in APP/PS1 and GLT-1±APP/PS1 mice. This upregulation might be a compensatory change against the accumulated glutamate resulting from GLT-1 impairment. Ceftriaxone treatment restored xCT expression in APP/PS1 mice, but not in GLT-1±APP/PS1 mice. Glutathione levels decreased in APP/PS1 mice in comparison to the wild-type group. After ceftriaxone administration, the decline in glutathione level was restored in APP/PS1 mice, but not in GLT-1±APP/PS1 mice.ConclusionCeftriaxone improves cognitive impairment of APP/PS1 mice by upregulating GLT-1-mediated uptake of glutamate and co-regulation of GLT-1 and xCT in APP/PS1 mice.

Keywords