Mechanics of Advanced Composite Structures (Nov 2023)

Free Vibration Analysis of Graphene Reinforced Laminated Composite Plates using Experimental Modal Testing

  • Meera Saheb Koppanati,
  • Mukkala Naga Rani,
  • k Krishna Bhaskar

DOI
https://doi.org/10.22075/macs.2023.28869.1448
Journal volume & issue
Vol. 10, no. 2
pp. 363 – 374

Abstract

Read online

Graphene has become a significant and handy nanomaterial due to its excellent tensile strength, electrical conductivity, and stiffness, and is the thinnest material. It could be utilized to reinforce the polymer matrix of composites, increasing their strength and stiffness. In this study, the vibration behaviour of carbon fiber graphene-reinforced hybrid polymer plate, graphene-reinforced polymer plate, and carbon fiber-reinforced polymer plate (CFRP), is examined in the context of developing laminated composite plates. The material properties of the graphene-reinforced matrix are estimated using the applicable Halpin-Tsai models. Following that, the orthotropic mechanical properties of a composite carbon fiber and hybrid matrix lamina are evaluated. Plates are modeled using finite element modeling methods while taking into account a specific stacking order and geometric layouts. The impact hammer modal testing method is used to document the plates' reaction to vibration. In order to see the intrinsic frequencies and mode shapes of the plate, the recorded time domain responses are translated to the frequency domain using the Fast Fourier transform (FFT). The ME Scope software is used for post-processing. The modes of vibration response are assessed by applying various boundary conditions. Results indicate that natural frequencies increase with increasing graphene volume fraction. The larger the volume percentage, the higher the plate’s frequency for all transverse modes, as seen. By incorporating 1% graphene into the polymer matrix, the first, second, third, and fourth mode forms increase by up to 32.35%, 48.96%, 22.17%, and 30.08%, respectively. Adding graphene to the composite raises the frequency of higher modes relative to the basic mode.

Keywords