Journal of King Saud University: Science (Dec 2021)

Cytotoxicity and apoptosis response of hexagonal zinc oxide nanorods against human hepatocellular liver carcinoma cell line

  • Javed Ahmad,
  • Rizwan Wahab,
  • Mohd Javed Akhtar,
  • Maqusood Ahamed

Journal volume & issue
Vol. 33, no. 8
p. 101658

Abstract

Read online

Hexagonal zinc oxide nanorods (ZnO-NRs) were prepared via solution process using zinc nitrate hexahydrate (Zn(NO3)2·6H2O, 0.25 M), hexamethylenetetramine (HMT) and sodium hydroxide at low concentration (4 × 10-3 M in 100 ml of distilled water) and refluxed at 100 °C for an hour. The HMT was used because its act as a template for the nucleation and growth of zinc oxide nanorods. The X-ray diffraction patterns (XRD) clearly reveal that the grown product is pure zinc oxide. The diameters and lengths of the synthesized nanorods lie between 200 and 250 nm and 2–3 μm respectively as observed from the field emission scanning electron microscopy (FESEM). The chemical functional properties was analyzed by Fourier Transform infra-red (FTIR) spectroscopy. This study was designed to show the possible effect of ZnO-NRs in human liver cancer (HepG2) cells. It induces cytotoxicity via reactive oxygen species (ROS), mitochondrial membrane potential. For gene expression analysis, it induces apoptotic gene marker P53, Bax, caspase3, Bcl2 genes. Based on analysis and observations, it concludes that the ZnO-NRs were utilized for toxicity at dose dependent via ROS generation against human hepato cellular liver carcinoma cell line.

Keywords