Nature Communications (Nov 2022)
Updated vaccine protects against SARS-CoV-2 variants including Omicron (B.1.1.529) and prevents transmission in hamsters
- Sapna Sharma,
- Thomas Vercruysse,
- Lorena Sanchez-Felipe,
- Winnie Kerstens,
- Madina Rasulova,
- Lindsey Bervoets,
- Carolien De Keyzer,
- Rana Abdelnabi,
- Caroline S. Foo,
- Viktor Lemmens,
- Dominique Van Looveren,
- Piet Maes,
- Guy Baele,
- Birgit Weynand,
- Philippe Lemey,
- Johan Neyts,
- Hendrik Jan Thibaut,
- Kai Dallmeier
Affiliations
- Sapna Sharma
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery
- Thomas Vercruysse
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy
- Lorena Sanchez-Felipe
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery
- Winnie Kerstens
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy
- Madina Rasulova
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy
- Lindsey Bervoets
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery
- Carolien De Keyzer
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery
- Rana Abdelnabi
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery
- Caroline S. Foo
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery
- Viktor Lemmens
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery
- Dominique Van Looveren
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy
- Piet Maes
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Zoonotic Infectious Diseases Unit
- Guy Baele
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Evolutionary and Computational Virology
- Birgit Weynand
- KU Leuven Department of Imaging and Pathology, Translational Cell and Tissue Research
- Philippe Lemey
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Evolutionary and Computational Virology
- Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery
- Hendrik Jan Thibaut
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy
- Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery
- DOI
- https://doi.org/10.1038/s41467-022-34439-7
- Journal volume & issue
-
Vol. 13,
no. 1
pp. 1 – 11
Abstract
Currently licensed COVID-19 vaccines are based on antigen sequences of early SARS-CoV-2 isolates, despite the prevalence of variants of concerns escaping vaccine-mediated protection. Using their updated yellow fever 17D vectored candidate, here, authors assess neutralising antibody responses against variants of concern, and demonstrate protection and reduced transmission in a hamster model.