PLoS ONE (Jan 2024)

Impact of cardiac rehabilitation on ventricular-arterial coupling and left ventricular function in patients with acute myocardial infarction.

  • Ho-Min Yoon,
  • Seung-Jae Joo,
  • Ki Young Boo,
  • Jae-Geun Lee,
  • Joon-Hyouk Choi,
  • Song-Yi Kim,
  • So Young Lee

DOI
https://doi.org/10.1371/journal.pone.0300578
Journal volume & issue
Vol. 19, no. 4
p. e0300578

Abstract

Read online

To maintain efficient myocardial function, optimal coordination between ventricular contraction and the arterial system is required. Exercise-based cardiac rehabilitation (CR) has been demonstrated to improve left ventricular (LV) function. This study aimed to investigate the impact of CR on ventricular-arterial coupling (VAC) and its components, as well as their associations with changes in LV function in patients with acute myocardial infarction (AMI) and preserved or mildly reduced ejection fraction (EF). Effective arterial elastance (EA) and index (EAI) were calculated from the stroke volume and brachial systolic blood pressure. Effective LV end-systolic elastance (ELV) and index (ELVI) were obtained using the single-beat method. The characteristic impedance (Zc) of the aortic root was calculated after Fourier transformation of both aortic pressure and flow waveforms. Pulse wave separation analysis was performed to obtain the reflection magnitude (RM). An exercise-based, outpatient cardiac rehabilitation (CR) program was administered for up to 6 months. Twenty-nine patients were studied. However, eight patients declined to participate in the CR program and were subsequently classified as the non-CR group. At baseline, E' velocity showed significant associations with EAI (beta -0.393; P = 0.027) and VAC (beta -0.375; P = 0.037). There were also significant associations of LV global longitudinal strain (LV GLS) with EAI (beta 0.467; P = 0.011). Follow-up studies after a minimum of 6 months demonstrated a significant increase in E' velocity (P = 0.035), improved EF (P = 0.010), and LV GLS (P = 0.001), and a decreased EAI (P = 0.025) only in the CR group. Changes in E' velocity were significantly associated with changes in EAI (beta -0.424; P = 0.033). Increased aortic afterload and VA mismatch were associated with a negative impact on both LV diastolic and systolic function. The outpatient CR program effectively decreased aortic afterload and improved LV diastolic and systolic dysfunction in patients with AMI and preserved or mildly reduced EF.