Energies (Jan 2023)

Constructing a Database of Reference Hydrothermal Sources for a Zero-Energy Building Certification Rating in South Korea and Analyzing the Renewable Energy Self-Sufficiency Rate Achieved by Water-Source Heat Pumps

  • Yeweon Kim,
  • Ki-Hyung Yu

DOI
https://doi.org/10.3390/en16010543
Journal volume & issue
Vol. 16, no. 1
p. 543

Abstract

Read online

This study aims to institutionalize an evaluation methodology to assess water-source heat pumps (WSHPs) when designing a zero-energy building. Thus, regions where zero-energy buildings were designed were subdivided into 66 sub-regions, thereby standardizing the temperatures on the source side of WSHPs using river water and pipeline water. Based on these data, ground-source and water-source heat pump system-based simulation (new and renewable energy self-sufficiency rate compared to building energy consumption) values were derived for cases whose condition (region or heat source) was different among the buildings certified as zero-energy buildings. The application of the standard meteorological data and reference hydrothermal data to the ECO2 program and outcome evaluation led to the following findings: in all cases (reference: Seoul), ground-source heat pumps (GSHPs) showed a higher self-sufficiency rate than WSHPs (ground source > pipeline water > river water). The self-sufficiency rate of GSHPs was 11–33% higher than that of WSHPs. In a regional comparison among the cold (Jeongseon), central (Seoul), and southern (Jeju Island) regions, WSHPs exhibited higher energy self-sufficiency rates than GSHPs under the conditions of higher water temperatures in winter and lower water temperatures in summer, as in the southern region.

Keywords