Journal of Control Science and Engineering (Jan 2017)
Fault Diagnosis of Nonlinear Uncertain Systems with Triangular Form
Abstract
A novel approach to fault diagnosis for a class of nonlinear uncertain systems with triangular form is proposed in this paper. It is based on the extended state observer (ESO) of the active disturbance rejection controller and linearization of dynamic compensation. Firstly, an ESO is designed to jointly estimate the states and the combination of uncertainty, faults, and nonlinear function of nonlinear uncertain systems. It can derive the estimation of nonlinear function via the state estimations and system model. Then, linearization of dynamic compensation is employed to linearize the system by offsetting nonlinear function mandatorily using its estimation. An observer-based residual generator is designed on the basis of the prior linearized model for fault diagnosis. Moreover, threshold treatment technique is adopted to improve the robustness of fault diagnosis. This method is utilizable and simple in construction and parameter tuning. And also we show the construction of ESO and give the corresponding convergence proof succinctly. Finally, a numerical example is presented to illustrate the validity of the proposed fault diagnosis scheme.