Mathematical Biosciences and Engineering (Jul 2021)
Distortional buckling behavior and design method of cold-formed steel lipped channel with rectangular holes under axial compression
Abstract
The use of cold-formed steel (CFS) channel sections with rectangular holes in the web is becoming gradually popular in building structures. However, such holes can result in sections becoming more susceptible to be distortional buckling and display lower load-carrying capacities. This paper presents a total of 44 axially-compressed tests of CFS lipped channel columns with and without rectangular web holes including different hole sizes and cross-sections. The test results show that the specimens were controlled by distortional buckling or interaction of local buckling and distortional buckling. The load-carrying capacities of specimens with rectangular holes were lower than that of specimens without hole. The load-carrying capacities of specimens were gradually decreased with the increasing of dimensions of holes. Then a nonlinear elasto-plastic finite element model (FEM) was developed and the analysis results showed good agreement with the test results. The validated FE model was used to conduct a parametric study involving 16 FEM to investigate the effects of the section, the dimension of the hole, and the number of holes on the ultimate strength of such channels. Furthermore, the formulas to predict the distortional buckling coefficient were developed for the section with holes by using the verified FEM. Finally, the tests and parametric study results were compared against the distortional buckling design strengths calculated in accordance with the developed method. The comparison results show that the proposed design method closely predict the load carrying capacity of CFS channel sections with rectangular web holes.
Keywords