Nova Scientia (Nov 2019)
Determinación de la parábola de la vasculatura de la retina mediante un algoritmo computacional de segmentación
Abstract
El análisis cuantitativo de la arquitectura de las venas temporales superior e inferior y su monitoreo sobre el tiempo puede facilitar el diagnóstico y tratamiento oportuno de la retinopatía diabética. En este trabajo se presenta un novedoso método que consiste de dos etapas correspondientes a la segmentación automática y modelado parabólico de las venas temporales superior e inferior en imágenes de fondo de ojo. En la primera etapa, el detector lineal multiescala (DLM) es empleado para detectar estructuras de tipo arterial en imágenes de la retina. Debido a que DLM es un método de realzado arterial, es necesario aplicar una estrategia de umbralización para clasificar pixeles de tipo arterial con respecto al fondo de la imagen, donde un valor de umbral determinado de forma experimental es comparado con cinco métodos de umbralización del estado del arte. En esta etapa, el método de segmentación propuesto es comparado con seis métodos especializados del estado del arte en términos de eficiencia de segmentación. En la segunda etapa, se desempeña un modelado parabólico mediante una estrategia de optimización utilizando un Algoritmo de Distribución Marginal Univariada sobre las arterias previamente segmentadas, y los resultados son comparados con dos métodos paramétricos del estado del arte y con las delineaciones realizadas por especialistas. Los resultados de segmentación arterial utilizando el detector lineal multiescala demostraron una alta eficiencia de segmentación obteniendo un valor de 0.9618 utilizando la base de datos DRIVE de imágenes de fondo de ojo. De igual forma, los resultados de modelado parabólico entregaron una eficiencia promedio de 0.825 con respecto a las delineaciones realizadas por especialistas oftalmólogos de las venas temporales superior e inferior. En base a los resultados de eficiencia y al tiempo computacional (5.62 segundos), el método propuesto puede considerarse como altamente apropiado para desempeñar diagnóstico asistido por computadora en el área de oftalmología.
Keywords