Ecotoxicology and Environmental Safety (Dec 2021)
Prolonged oral ingestion of microplastics induced inflammation in the liver tissues of C57BL/6J mice through polarization of macrophages and increased infiltration of natural killer cells
Abstract
Microplastics (< 5 mm diameter) are one of most important environmental pollutants and contaminants worldwide. However, how microplastics affect liver immune microenvironment in not well understood. Microplastics (0.5 µm) were administered orally to C57BL/6J mice for 4 consecutive weeks at the rate of 0.5 mg/day. Non-parenchymal cells were isolated from of the mice through fractionation of fresh hepatic tissues. The immune landscape for four cell populations of B cells, T cells, NK cells and macrophages in the liver tissues was then evaluated using flow cytometry. The secretion level of inflammatory cytokines and associated signaling pathway were investigated using quantitative real-time polymerase chain reaction and western blot. Oral ingestion of microplastics increases liver weight, general liver index as well as expression of serum, liver function-related indicators. Microplastics also increased the infiltration of natural killer cells and macrophages to non-parenchymal liver cells, but reduced that of B cells to the same tissues. However, microplastics had no effect on the infiltration of T cell to non-parenchymal liver cells. Ingestion of MPs also up-regulated the expression of IFN-γ, TNF-α, IL-1β, IL-6 and IL-33 mRNA, but down-regulated that of IL-4, IL-5, IL-10, IL-18 and TGF-β1. Overall, the aforementioned processes were regulated via the NF-κB pathway in the hepatic non-parenchymal cells. Microplastics disrupts inflammatory process in liver tissues via the NF-κB signaling pathway. These findings provide a strong foundation on immune processes in hepatic tissues following prolonged ingestion of microplastics.