Atmosphere (Sep 2023)
Diurnal Cycle of Tropospheric Winds over West Sumatra and Its Variability Associated with Various Climate and Weather Modes
Abstract
The typical diurnal variability of tropospheric winds over West Sumatra and their changes associated with El Niño Southern Oscillation, Quasi-Biennial Oscillation, Madden–Julian Oscillations and convectively coupled Kelvin waves during the extended boreal winter season are investigated based on nineteen years of observations from Equatorial Atmosphere Radar in Kototabang, Indonesia. Sub-diurnal wind variability is assessed based on the amplitude and phase of the diurnal (24 h) and semidiurnal (12 h) modes.The results show that composite diurnal variability is dominated by cloud-induced circulation and thermal tides. Although these sub-diurnal modes do not change the daily mean wind direction, they modulate velocities throughout the day. Typical diurnal evolution of the vertical wind component is consistent with changes in the latent heating profiles associated with the evolution of a cloud field from cumulus before noon to deep convection in the afternoon and stratiform clouds in the evening. El Niño Southern Oscillation and Quasi-Biennial Oscillation affect the mean tropospheric winds, throughout the troposphere and above 250 hPa, respectively, but do not affect sub-diurnal amplitudes. Eastward propagating Madden–Julian Oscillations and convectively coupled Kelvin waves impact both the mean and sub-diurnal tropospheric wind variability. Both horizontal and vertical winds show the largest variability in the lower and mid troposphere (below 400 hPa). The observed variability in the vertical wind component highlights that large-scale phenomena interact with both the local evolution and progression of a cloud field through dynamical feedback.
Keywords