Land (Aug 2024)

Exploring the Relationship between Urbanization and Vegetation Ecological Quality Changes in the Guangdong–Hong Kong–Macao Greater Bay Area

  • Yanyan Wu,
  • Zhaohui Luo,
  • Zhifeng Wu

DOI
https://doi.org/10.3390/land13081246
Journal volume & issue
Vol. 13, no. 8
p. 1246

Abstract

Read online

Rapid global urbanization and its progress have profoundly affected urban vegetation. The ecological quality of urban vegetation is a vital indicator of regional ecological stability and health. A comprehensive assessment of the coupling coordination and coercive relationship between urbanization and the vegetation ecological quality is essential for promoting sustainable regional green development. Using the rapidly urbanizing Guangdong–Hong Kong–Macao Greater Bay Area (GBA) urban agglomeration in China as an example, this study evaluates the vegetation quality condition and the level of urbanization and explores the dynamic relationship between vegetation ecological quality and urbanization processes. This study introduces the vegetation ecological quality index (VEQI) based on net primary productivity (NPP) and fractional vegetation cover (FVC), as well as the comprehensive urbanization index (CUI) derived from gross domestic production (GDP), population density, and nighttime lighting data. The coupling coordination and Tapio decoupling models are employed to assess the degree of coupling coordination and the decoupling relationship between the VEQI and CUI across different periods. The results showed that (1) from 2000 to 2020, the VEQI in the GBA showed a significant increase, accompanied by continuous urbanization, particularly evident with the high CUI values in central areas; (2) the coupling coordination degree (CCD) exhibits high values and significant change slopes in the central GBA, indicating dynamic interactions between urbanization and vegetation ecological quality; (3) the decoupling states between the VEQI and CUI are dominated by weak decoupling (WD), strong decoupling (SD), expansive negative decoupling (END), and expansive coupling (EC), suggesting improvements in the relationship between urbanization and vegetation ecological quality; (4) the coordinated development level of the VEQI and CUI in the study area shows improvement, and their decoupling relationship displays a positive trend. Nevertheless, it remains crucial to address the impact of urbanization pressure on vegetation ecological quality and to implement proactive measures in response. The results of this study provide theoretical support for mesoscale development planning, monitoring vegetation ecological conditions, and formulating environmental policies.

Keywords