Digital Health (Jul 2022)

Predicting death risk analysis in fully vaccinated people using novel extreme regression-voting classifier

  • Eysha Saad,
  • Saima Sadiq,
  • Ramish Jamil,
  • Furqan Rustam,
  • Arif Mehmood,
  • Gyu Sang Choi,
  • Imran Ashraf

DOI
https://doi.org/10.1177/20552076221109530
Journal volume & issue
Vol. 8

Abstract

Read online

Vaccination for the COVID-19 pandemic has raised serious concerns among the public and various rumours are spread regarding the resulting illness, adverse reactions, and death. Such rumours can damage the campaign against the COVID-19 and should be dealt with accordingly. One prospective solution is to use machine learning-based models to predict the death risk for vaccinated people by utilizing the available data. This study focuses on the prognosis of three significant events including ‘not survived’, ‘recovered’, and ‘not recovered’ based on the adverse events followed by the second dose of the COVID-19 vaccine. Extensive experiments are performed to analyse the efficacy of the proposed Extreme Regression- Voting Classifier model in comparison with machine learning models with Term Frequency-Inverse Document Frequency, Bag of Words, and Global Vectors, and deep learning models like Convolutional Neural Network, Long Short Term Memory, and Bidirectional Long Short Term Memory. Experiments are carried out on the original, as well as, a balanced dataset using Synthetic Minority Oversampling Approach. Results reveal that the proposed voting classifier in combination with TF-IDF outperforms with a 0.85 accuracy score on the SMOTE-balanced dataset. In line with this, the validation of the proposed voting classifier on binary classification shows state-of-the-art results with a 0.98 accuracy.