Reviews in Analytical Chemistry (Apr 2021)

Synthesis of a new organic probe 4-(4 acetamidophenylazo) pyrogallol for spectrophotometric determination of Bi(III) and Al(III) in pharmaceutical samples

  • Ammar Jumana W.,
  • Khan Zainab A.,
  • Ghazi Marwa N.,
  • Naser Naser A.

DOI
https://doi.org/10.1515/revac-2021-0125
Journal volume & issue
Vol. 40, no. 1
pp. 108 – 126

Abstract

Read online

A modern development discusses the synthesis and validity of simple, sensitive, and versatile spectrophotometric methods for Bi(III) and Al(III) determination in pharmaceutical formulations have been conducted. In the present paper, 4-(4 acetamidophenylazo) pyrogallol has been synthesized as a new organic compound, 4-APAP, by coupling pyrogallol in a regulated pH medium with diazotized p-aminoacetanilide. 4-APAP was identified by methods of FT-IR, 1H-NMR, 13C-NMR, and thermal analysis (thermogravimetry and differential scanning calorimetry). Solvatochromic activity was also studied in solvents with different polarities. The Kamlet and Taft linear solvation energy relationship was used to correlate shifts in UV-Visible spectra of 4-APAP with Kamlet-Taft parameters (α, β, and π*). The optimum assay conditions showed linearity from 0.3–13 to 0.5–11 μg·mL−1 for Bi(III) and Al(III), respectively. Molar absorptivity values were 3.365 × 104 and 0.356 × 104 L·mol−1·cm−1 for Bi(III) and Al(III), with similar Sandell's sensitivity measures of 0.006 and 0.008 μg·cm−2. Detection limits and quantification limits were 0.013 and 0.043 μg·mL−1 for Bi(III), respectively, and 0.018 and 0.059 μg·mL−1 for Al(III) with the relative standard deviation for determination of both metal ions using 4-APAP probe being <2.0%. The validity, accuracy, and efficiency of the approaches were demonstrated by the determination of Bi(III) and Al(III) in different formulations.

Keywords