Journal of Experimental & Clinical Cancer Research (Aug 2024)

TFEB controls sensitivity to chemotherapy and immuno-killing in non-small cell lung cancer

  • Muhlis Akman,
  • Ciro Monteleone,
  • Gabriella Doronzo,
  • Martina Godel,
  • Francesca Napoli,
  • Alessandra Merlini,
  • Virginia Campani,
  • Valeria Nele,
  • Elisa Balmas,
  • Tatiana Chontorotzea,
  • Simona Fontana,
  • Sabrina Digiovanni,
  • Francesca Alice Barbu,
  • Elena Astanina,
  • Niloufar Jafari,
  • Iris Chiara Salaroglio,
  • Joanna Kopecka,
  • Giuseppe De Rosa,
  • Thomas Mohr,
  • Alessandro Bertero,
  • Luisella Righi,
  • Silvia Novello,
  • Giorgio Vittorio Scagliotti,
  • Federico Bussolino,
  • Chiara Riganti

DOI
https://doi.org/10.1186/s13046-024-03142-4
Journal volume & issue
Vol. 43, no. 1
pp. 1 – 23

Abstract

Read online

Abstract Background In non-small cell lung cancer (NSCLC) the efficacy of chemo-immunotherapy is affected by the high expression of drug efflux transporters as ABCC1 and by the low expression of ABCA1, mediating the isopentenyl pyrophosphate (IPP)-dependent anti-tumor activation of Vγ9Vδ2 T-lymphocytes. In endothelial cells ABCA1 is a predicted target of the transcription factor EB (TFEB), but no data exists on the correlation between TFEB and ABC transporters involved in the chemo-immuno-resistance in NSCLC. Methods The impact of TFEB/ABCC1/ABCA1 expression on NSCLC patients’ survival was analyzed in the TCGA-LUAD cohort and in a retrospective cohort of our institution. Human NSCLC cells silenced for TFEB (shTFEB) were analyzed for ABC transporter expression, chemosensitivity and immuno-killing. The chemo-immuno-sensitizing effects of nanoparticles encapsulating zoledronic acid (NZ) on shTFEB tumors and on tumor immune-microenvironment were evaluated in Hu-CD34+ mice by single-cell RNA-sequencing. Results TFEBlowABCA1lowABCC1high and TFEBhighABCA1highABCC1low NSCLC patients had the worst and the best prognosis, respectively, in the TCGA-LUAD cohort and in a retrospective cohort of patients receiving platinum-based chemotherapy or immunotherapy as first-line treatment. By silencing shTFEB in NSCLC cells, we demonstrated that TFEB was a transcriptional inducer of ABCA1 and a repressor of ABCC1. shTFEB cells had also a decreased activity of ERK1/2/SREBP2 axis, implying reduced synthesis and efflux via ABCA1 of cholesterol and its intermediate IPP. Moreover, TFEB silencing reduced cholesterol incorporation in mitochondria: this event increased the efficiency of OXPHOS and the fueling of ABCC1 by mitochondrial ATP. Accordingly, shTFEB cells were less immuno-killed by the Vγ9Vδ2 T-lymphocytes activated by IPP and more resistant to cisplatin. NZ, which increased IPP efflux but not OXPHOS and ATP production, sensitized shTFEB immuno-xenografts, by reducing intratumor proliferation and increasing apoptosis in response to cisplatin, and by increasing the variety of anti-tumor infiltrating cells (Vγ9Vδ2 T-lymphocytes, CD8+T-lymphocytes, NK cells). Conclusions This work suggests that TFEB is a gatekeeper of the sensitivity to chemotherapy and immuno-killing in NSCLC, and that the TFEBlowABCA1lowABCC1high phenotype can be predictive of poor response to chemotherapy and immunotherapy. By reshaping both cancer metabolism and tumor immune-microenvironment, zoledronic acid can re-sensitize TFEBlow NSCLCs, highly resistant to chemo- and immunotherapy.

Keywords