Journal of Space Weather and Space Climate (Jan 2016)

Estimation of energy budget of ionosphere-thermosphere system during two CIR-HSS events: observations and modeling

  • Verkhoglyadova Olga,
  • Meng Xing,
  • Mannucci Anthony J.,
  • Tsurutani Bruce T.,
  • Hunt Linda A.,
  • Mlynczak Martin G.,
  • Hajra Rajkumar,
  • Emery Barbara A.

DOI
https://doi.org/10.1051/swsc/2016013
Journal volume & issue
Vol. 6
p. A20

Abstract

Read online

We analyze the energy budget of the ionosphere-thermosphere (IT) system during two High-Speed Streams (HSSs) on 22–31 January, 2007 (in the descending phase of solar cycle 23) and 25 April–2 May, 2011 (in the ascending phase of solar cycle 24) to understand typical features, similarities, and differences in magnetosphere-ionosphere-thermosphere (IT) coupling during HSS geomagnetic activity. We focus on the solar wind energy input into the magnetosphere (by using coupling functions) and energy partitioning within the IT system during these intervals. The Joule heating is estimated empirically. Hemispheric power is estimated based on satellite measurements. We utilize observations from TIMED/SABER (Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry) to estimate nitric oxide (NO) and carbon dioxide (CO2) cooling emission fluxes. We perform a detailed modeling study of these two similar HSS events with the Global Ionosphere-Thermosphere Model (GITM) and different external driving inputs to understand the IT response and to address how well the model reproduces the energy transport. GITM is run in a mode with forecastable inputs. It is shown that the model captures the main features of the energy coupling, but underestimates NO cooling and auroral heating in high latitudes. Lower thermospheric forcing at 100 km altitude is important for correct energy balance of the IT system. We discuss challenges for a physics-based general forecasting approach in modeling the energy budget of moderate IT storms caused by HSSs.

Keywords