Annales Geophysicae (Sep 2021)
Polar tongue of ionisation during geomagnetic superstorm
Abstract
During the main phase of geomagnetic storms, large positive ionospheric plasma density anomalies arise at middle and polar latitudes. A prominent example is the tongue of ionisation (TOI), which extends poleward from the dayside storm-enhanced density (SED) anomaly, often crossing the polar cap and streaming with the plasma convection flow into the nightside ionosphere. A fragmentation of the TOI anomaly contributes to the formation of polar plasma patches partially responsible for the scintillations of satellite positioning signals at high latitudes. To investigate this intense plasma anomaly, numerical simulations of plasma and neutral dynamics during the geomagnetic superstorm of 20 November 2003 are performed using the Thermosphere Ionosphere Electrodynamics Global Circulation Model (TIE-GCM) coupled with the statistical parameterisation of high-latitude plasma convection. The simulation results reproduce the TOI features consistently with observations of total electron content and with the results of ionospheric tomography, published previously by the authors. It is demonstrated that the fast plasma uplift, due to the electric plasma convection expanded to subauroral mid-latitudes, serves as a primary feeding mechanism for the TOI anomaly, while a complex interplay between electrodynamic and neutral wind transports is shown to contribute to the formation of a mid-latitude SED anomaly. This contrasts with published simulations of relatively smaller geomagnetic storms, where the impact of neutral dynamics on the TOI formation appears more pronounced. It is suggested that better representation of the high-latitude plasma convection during superstorms is needed. The results are discussed in the context of space weather modelling.