iScience (Sep 2022)

Estimation of activity coefficients for aqueous organic redox flow batteries: Theoretical basis and equations

  • Gaël Mourouga,
  • Déborah Chery,
  • Emmanuel Baudrin,
  • Hyacinthe Randriamahazaka,
  • Thomas J. Schmidt,
  • Juergen O. Schumacher

Journal volume & issue
Vol. 25, no. 9
p. 104901

Abstract

Read online

Summary: The field of aqueous organic redox flow batteries (AORFBs) has been developing fast in recent years, and many chemistries are starting to emerge as serious contenders for grid-scale storage. The industrial development of these systems would greatly benefit from accurate physics-based models, allowing to optimize battery operation and design. Many authors in the field of flow battery modeling have brought evidence that the dilute solution hypothesis (the assumption that aqueous electrolytes behave ideally) does not hold for these systems and that calculating cell voltage or chemical potentials through concentrations rather than activities, while serviceable, may become insufficient when greater accuracy is required. This article aims to provide the theoretical basis for calculating activity coefficients of aqueous organic electrolytes used in AORFBs to provide tools to predict the concentrated behavior of aqueous electrolytes, thereby improving the accuracy of physics-based models for flow batteries.

Keywords