Naučno-tehničeskij Vestnik Informacionnyh Tehnologij, Mehaniki i Optiki (May 2014)

SECTIONING METHOD APPLICATION AT ELLIPSOMETRY OF INHOMOGENEOUS REFLECTION SYSTEMS

  • A. N. Gorlyak,
  • V. M. Solonukha,
  • I. A. Khramtsovsky

Journal volume & issue
Vol. 14, no. 3
pp. 24 – 29

Abstract

Read online

The paper deals with investigation of application peculiarities of ellipsometry methods and UF spectrophotometry at mechanical and chemical processing of optical engineering surface elements made of quartz glass. Ellipsometer LEF–3M–1, spectrophotometer SF–26 and interferometer MII–4 are used as experiment tools; they obtain widely known technical characteristics. Polarization characteristics of reflected light beam were measured by ellipsometry method; spectrophotometry method was used for measuring radiation transmission factor in UF spectrum area; by interference method surface layer thickness at quartz glass etching was measured. A method for HF–sectioning of inhomogeneous surface layer of polished quartz glass is developed based on ellipsometry equation for reflection system «inhomogeneous layer – inhomogeneous padding». The method makes it possible to carry out the measuring and analysis of optical characteristics for inhomogeneous layers system on inhomogeneous padding and to reconstruct optical profile of surface layers at quartz glass chemical processing. For definition of refractive index change along the layer depth, approximation of experimental values for polarization characteristics of homogeneous layers system is used. Inhomogeneous surface layer of polished quartz glass consists of an area (with thickness up to 20 nm) and layer refractive index less than refractive index for quartz glass and an area (with thickness up to 0,1 μm) and layer refractive index larger than refractive index for quartz glass. Ellipsometry and photometry methods are used for definition of technological conditions and optical characteristics of inhomogeneous layers at quartz glass chemical processing for optical elements with minimum radiation losses in UF spectrum area.

Keywords