Revista UIS Ingenierías (Jun 2011)
Acotación del error de modelos de redes neuronales aplicados al pronóstico de series de tiempo
Abstract
Las redes neuronales artificiales son una importante técnica en el pronóstico de series de tiempo no lineales. Sin embargo,el entrenamiento de las redes neuronales es una tarea difícil, a causa de la presencia de muchos puntos óptimos localesy a la irregularidad de la superficie de error. En este contexto, es muy fácil obtener modelos sub-entrenados o sobreentrenadossin poder de pronóstico. Así, los investigadores y los profesionales necesitan contar con criterios para detectaresta clase de problemas. En este artículo, se demuestra que el uso de metodologías bien conocidas en el pronóstico deseries de tiempo lineales, tales como la metodología de Box-Jenkins o los modelos de suavizado exponencial, son valiosasherramientas para detectar modelos de redes neuronales mal especificados.