Molecular Therapy: Nucleic Acids (Mar 2021)
Engineering of human induced pluripotent stem cells via human artificial chromosome vectors for cell therapy and disease modeling
- Yasuhiro Kazuki,
- Narumi Uno,
- Satoshi Abe,
- Naoyo Kajitani,
- Kanako Kazuki,
- Yuwna Yakura,
- Chiaki Sawada,
- Shuta Takata,
- Masaki Sugawara,
- Yuichi Nagashima,
- Akane Okada,
- Masaharu Hiratsuka,
- Mitsuhiko Osaki,
- Giulia Ferrari,
- Francesco Saverio Tedesco,
- Satoshi Nishikawa,
- Ken Fukumoto,
- Shin-ichiro Takayanagi,
- Atsushi Kunisato,
- Shin Kaneko,
- Mitsuo Oshimura,
- Kazuma Tomizuka
Affiliations
- Yasuhiro Kazuki
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan; Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan; Corresponding author: Yasuhiro Kazuki, Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan.
- Narumi Uno
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan; Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan; Laboratory of Bioengineering, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
- Satoshi Abe
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Naoyo Kajitani
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Kanako Kazuki
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Yuwna Yakura
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Chiaki Sawada
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Shuta Takata
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Masaki Sugawara
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Yuichi Nagashima
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Akane Okada
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Masaharu Hiratsuka
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Mitsuhiko Osaki
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Giulia Ferrari
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
- Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK; Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; The Francis Crick Institute, London NW1 1AT, UK
- Satoshi Nishikawa
- Regenerative Medicine Research Laboratories, Research Functions Unit, R&D Division, Kyowa Kirin, Co., Ltd. 3-6-6, Asahi-machi, Machida-shi, Tokyo 194-8533, Japan
- Ken Fukumoto
- Cell Therapy Project, R&D Division, Kirin Holdings, Co., Ltd. 1-13-5, Fukuura Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
- Shin-ichiro Takayanagi
- Cell Therapy Project, R&D Division, Kirin Holdings, Co., Ltd. 1-13-5, Fukuura Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
- Atsushi Kunisato
- Project Planning Section, Kirin Holdings, Co., Ltd., 4-10-2 Nakano, Nakano-ku, Tokyo 164-0001 Japan
- Shin Kaneko
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Mitsuo Oshimura
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Kazuma Tomizuka
- Laboratory of Bioengineering, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
- Journal volume & issue
-
Vol. 23
pp. 629 – 639
Abstract
Genetic engineering of induced pluripotent stem cells (iPSCs) holds great promise for gene and cell therapy as well as drug discovery. However, there are potential concerns regarding the safety and control of gene expression using conventional vectors such as viruses and plasmids. Although human artificial chromosome (HAC) vectors have several advantages as a gene delivery vector, including stable episomal maintenance and the ability to carry large gene inserts, the full potential of HAC transfer into iPSCs still needs to be explored. Here, we provide evidence of a HAC transfer into human iPSCs by microcell-mediated chromosome transfer via measles virus envelope proteins for various applications, including gene and cell therapy, establishment of versatile human iPSCs capable of gene loading and differentiation into T cells, and disease modeling for aneuploidy syndrome. Thus, engineering of human iPSCs via desired HAC vectors is expected to be widely applied in biomedical research.