Respiratory Research (Mar 2006)

The role of endothelin-1 in hyperoxia-induced lung injury in mice

  • Albu Gergely,
  • Lele Eniko,
  • Tolsa Jean-Francois,
  • Donati Yves,
  • Ruchonnet-Metrailler Isabelle,
  • Peták Ferenc,
  • Habre Walid,
  • Beghetti Morice,
  • Barazzone-Argiroffo Constance

DOI
https://doi.org/10.1186/1465-9921-7-45
Journal volume & issue
Vol. 7, no. 1
p. 45

Abstract

Read online

Abstract Background As prolonged hyperoxia induces extensive lung tissue damage, we set out to investigate the involvement of endothelin-1 (ET-1) receptors in these adverse changes. Methods Experiments were performed on four groups of mice: control animals kept in room air and a group of mice exposed to hyperoxia for 60 h were not subjected to ET-1 receptor blockade, whereas the dual ETA/ETB-receptor blocker tezosantan (TEZ) was administered via an intraperitoneal pump (10 mg/kg/day for 6 days) to other groups of normal and hyperoxic mice. The respiratory system impedance (Zrs) was measured by means of forced oscillations in the anesthetized, paralyzed and mechanically ventilated mice before and after the iv injection of ET-1 (2 μg). Changes in the airway resistance (Raw) and in the tissue damping (G) and elastance (H) of a constant-phase tissue compartment were identified from Zrs by model fitting. Results The plasma ET-1 level increased in the mice exposed to hyperoxia (3.3 ± 1.6 pg/ml) relative to those exposed to room air (1.6 ± 0.3 pg/ml, p 2O/l, p 2O/l, p Conclusion These findings substantiate the involvement of the ET-1 receptors in the physiopathogenesis of hyperoxia-induced lung damage. Dual ET-1 receptor antagonism may well be of value in the prevention of hyperoxia-induced parenchymal damage.