Molecules (Mar 2021)

Novel IMB16-4 Compound Loaded into Silica Nanoparticles Exhibits Enhanced Oral Bioavailability and Increased Anti-Liver Fibrosis In Vitro

  • Xia Niu,
  • Xiaomei Wang,
  • Bingyu Niu,
  • Guoqing Li,
  • Xinyi Yang,
  • Yucheng Wang,
  • Guiling Li

DOI
https://doi.org/10.3390/molecules26061545
Journal volume & issue
Vol. 26, no. 6
p. 1545

Abstract

Read online

Background: Liver fibrosis, as a common and refractory disease, is challenging to treat due to the lack of effective agents worldwide. Recently, we have developed a novel compound, N-(3,4,5-trichlorophenyl)-2(3-nitrobenzenesulfonamide) benzamide (IMB16-4), which is expected to have good potential effects against liver fibrosis. However, IMB16-4 is water-insoluble and has very low bioavailability. Methods: Mesoporous silica nanoparticles (MSNs) were selected as drug carriers for the purpose of increasing the dissolution of IMB16-4, as well as improving its oral bioavailability and inhibiting liver fibrosis. The physical states of IMB16-4 and IMB16-4-MSNs were investigated using nitrogen adsorption, thermogravimetric analysis (TGA), HPLC, UV-Vis, X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Results: The results show that MSNs enhanced the dissolution rate of IMB16-4 significantly. IMB16-4-MSNs reduced cytotoxicity at high concentrations of IMB16-4 on human hepatic stellate cells LX-2 cells and improved oral bioavailability up to 530% compared with raw IMB16-4 on Sprague–Dawley (SD) rats. In addition, IMB16-4-MSNs repressed hepatic fibrogenesis by decreasing the expression of hepatic fibrogenic markers, including α-smooth muscle actin (α-SMA), transforming growth factor-beta (TGF-β1) and matrix metalloproteinase-2 (MMP2) in LX-2 cells. Conclusions: These results provided powerful information on the use of IMB16-4-MSNs for the treatment of liver fibrosis in the future.

Keywords