Cell Reports (Oct 2013)
Pluripotent Stem Cell Protein Sox2 Confers Sensitivity to LSD1 Inhibition in Cancer Cells
Abstract
Gene amplification of Sox2 at 3q26.33 is a common event in squamous cell carcinomas (SCCs) of the lung and esophagus, as well as several other cancers. Here, we show that the expression of LSD1/KDM1 histone demethylase is significantly elevated in Sox2-expressing lung SCCs. LSD1-specific inhibitors selectively impair the growth of Sox2-expressing lung SCCs, but not that of Sox2-negative cells. Sox2 expression is associated with sensitivity to LSD1 inhibition in lung, breast, ovarian, and other carcinoma cells. Inactivation of LSD1 reduces Sox2 expression, promotes G1 cell-cycle arrest, and induces genes for differentiation by selectively modulating the methylation states of histone H3 at lysines 4 (H3K4) and 9 (H3K9). Reduction of Sox2 further suppresses Sox2-dependent lineage-survival oncogenic potential, elevates trimethylation of histone H3 at lysine 27 (H3K27) and enhances growth arrest and cellular differentiation. Our studies suggest that LSD1 serves as a selective epigenetic target for therapy in Sox2-expressing cancers.