Journal of Marine Science and Engineering (Mar 2023)
Channel Model and Signal-Detection Algorithm for the Combined Effects of Turbulence and Link Misalignment in Underwater Optical Massive MIMO Systems
Abstract
In recent years, underwater wireless optical communication (UWOC) has become a potential wireless carrier candidate for signal transmission in water mediums such as oceans. Underwater signal transmission is impaired by several challenges such as turbulence, scattering, attenuation, and misalignment. In this paper, we propose an improved-order successive interference cancellation (I-OSIC) algorithm based on partition space–time block coding (STBC) technology to solve the sub-channel correlation enhancement problem, which is caused by the combined effects of turbulence and link misalignment in the underwater optical massive multiple-input multiple-output (massive MIMO) systems. The partition STBC technology can make the encoded symbols orthogonality of space and time resist random fading under turbulence environments and fully use the communication link of the massive MIMO system. Under link misalignment conditions, the receiver detector will receive multiple beams. The proposed I-OSIC algorithm based on partition STBC can precisely track the degree of link misalignment error and reorder receiver signals based on the minimum interference criterion. It can use the channel matrix to estimate the interference magnitude of the link misalignment, and then eliminate the interference successively by demodulating the least interfered signal first. When the link misalignment error is large, the I-OSIC algorithm can provide a signal-to-noise ratio (SNR) gain of about 3 dB and provides the same error performance compared with the successive interference cancellation algorithm based on the received signal power.
Keywords