Energies (Jul 2022)
Dynamic Modeling and Comparison Study of Control Strategies of a Small-Scale Organic Rankine Cycle
Abstract
The control strategy is crucial for the effective and safe operation of the ORC system. A transient model of the ORC system was developed in the present work and validated by the experimental data of a 4 kW ORC prototype. Then, the effect of heat source temperature on the dynamic response and operation characteristics of the ORC system were analyzed. Five control strategies were compared: the constant working fluid mass flow rate mode, constant vapor superheat mode, constant vapor temperature mode, constant evaporation pressure mode and constant output power load mode. Under the constraint that the working fluid at the expander inlet should be superheated, we found that the constant vapor superheat mode enabled the safe operation with the largest range of heat source temperature, while the other four modes were only available for a certain temperature range. Apart from the constant output power mode, the constant evaporation pressure mode can also provide a relatively stable performance for the ORC unit. The variation of the thermal efficiency was limited when the heat source temperature was higher than 125 °C, except for the constant vapor temperature mode. Considering the high performance and stable operation of the ORC system, it is necessary to have different operation modes combined in the control strategy according to the specific working scenarios.
Keywords