Fluids (Sep 2021)
Semi-Implicit Finite Volume Procedure for Compositional Subsurface Flow Simulation in Highly Anisotropic Porous Media
Abstract
Subsurface multiphase flow in porous media simulation is extensively used in many disciplines. Large meshes with non-orthogonalities (e.g., corner point geometries) and full tensor highly anisotropy ratios are usually required for subsurface flow applications. Nonetheless, simulations using two-point flux approximations (TPFA) fail to accurately calculate fluxes in these types of meshes. Several simulators account for non-orthogonal meshes, but their discretization method is usually non-conservative. In this work, we propose a semi-implicit procedure for general compositional flow simulation in highly anisotropic porous media as an extension of TPFA. This procedure accounts for non-orthogonalities by adding corrections to residual in the Newton-Raphson method. Our semi-implicit formulation poses the guideline for FlowTraM (Flow and Transport Modeller) implementation for research and industry subsurface purposes. We validated FlowTraM with a non-orthogonal variation of the Third SPE Comparative Solution Project case. Our model is used to successfully simulating a real Colombian oil field.
Keywords