Sensors (Feb 2014)

Incremental Structured Dictionary Learning for Video Sensor-Based Object Tracking

  • Ming Xue,
  • Hua Yang,
  • Shibao Zheng,
  • Yi Zhou,
  • Zhenghua Yu

DOI
https://doi.org/10.3390/s140203130
Journal volume & issue
Vol. 14, no. 2
pp. 3130 – 3155

Abstract

Read online

To tackle robust object tracking for video sensor-based applications, an online discriminative algorithm based on incremental discriminative structured dictionary learning (IDSDL-VT) is presented. In our framework, a discriminative dictionary combining both positive, negative and trivial patches is designed to sparsely represent the overlapped target patches. Then, a local update (LU) strategy is proposed for sparse coefficient learning. To formulate the training and classification process, a multiple linear classifier group based on a K-combined voting (KCV) function is proposed. As the dictionary evolves, the models are also trained to timely adapt the target appearance variation. Qualitative and quantitative evaluations on challenging image sequences compared with state-of-the-art algorithms demonstrate that the proposed tracking algorithm achieves a more favorable performance. We also illustrate its relay application in visual sensor networks.

Keywords