Notulae Botanicae Horti Agrobotanici Cluj-Napoca (Jun 2024)
Marine actinomycetes for biocontrol of Fusarium solani in tomato plants: In vitro and in vivo studies
Abstract
Using microorganisms as biocontrol agents of phytopathogens has been an alternative to synthetic fungicides. Actinomycetes isolated from soil and plants have reduced diseases caused by phytopathogens; however, microorganisms from marine environments may be an option as biocontrol agents. The tomato crop possesses an important economic impact worldwide, being Mexico the main exporter. Several species of Fusarium cause damage to tomato crops and are controlled with synthetic fungicides. The objective of this work was to determine the effect of marine actinomycetes as biocontrol on Fusarium solani in tomato plants. Four strains of marine actinomycetes (A20, A19, A18, and A15) and one terrestrial actinomycete (ED48) were used. The actinomycetes strains used, produced siderophores. The greatest inhibition of mycelial growth of F. solani due to iron competition was obtained by strain A19 with 74.28%. Only two actinomycetes showed antifungal activity by VOCs (A19 and A18), strain A19 showed the highest antagonistic activity with PICR of 76.75%. Actinomycetes treatments showed significant differences with synthetic fungicide application in growth, disease severity (SE), and disease incidence (DI) variables. The application of marine actinomycete (A19) on plants infested with F. solani increased the levels of enzyme activity (SOD, POD, CAT, and PAL) versus plants in that only F. solani and distilled water (control) were applied. Actinomycetes of marine origin are an option as biocontrol agents for F. solani.
Keywords