Poultry Science (Jun 2024)
Unlocking the power of Libidibia ferrea extracts: antimicrobial, antioxidant, and protective properties for potential use in poultry production
Abstract
ABSTRACT: Plant extracts are increasingly recognized as potential prophylactic agents in poultry production due to their diverse bioactive properties. This study investigated the phytochemical and biological properties of Libidibia ferrea (L. ferrea), a plant species native to the Caatinga region of northeastern Brazil. The aim of this study was to identify secondary metabolites and to demonstrate the antimicrobial, antioxidant and protective effects of the plant extract. Three extracts were produced: EHMV, a hydroalcoholic extract from the maceration of pods, and EEMC and EEMV ethanolic extracts from the maceration of peels and pods, respectively, from L. ferrea. High-performance liquid chromatography (HPLC-MS/MS) and atomic absorption spectroscopy (AAS) were used to characterize the metabolites and metals. The antimicrobial activity against Salmonella Galinarum (SG), Salmonella pullorum (SP), Salmonella Heidelberg (SH) and Avian pathogenic Escherichia coli (APEC) was evaluated alone and in combination with probiotic bacteria (Bacillus velenzensis) using agar diffusion and the bactericidal minimum concentration (CBM). The antioxidant potential of the extracts was evaluated in 5 in vitro assays and 6 assays in 3t3 cells. The toxicity of EHMV was tested, and its ability to combat SP infection was demonstrated using a chicken embryo model. The results showed that EHMV exhibited significant antimicrobial activity. The combination of EHMV with BV had synergistic effects, increased antimicrobial activity and induced bacterial sporulation. Composition analysis revealed the presence of 8 compounds, including tannins and phenolic compounds. In vitro antioxidant tests demonstrated that total antioxidant capacity(TAC) activity was increased, and the extract had strong reducing power and notable metal chelating effects. Analysis of 3T3 cells confirmed the protective effect of EHMV against oxidative stress. Toxicity assessments in chicken embryos confirmed the safety of EHMV and its protective effect against SP-induced mortality. EHMV from L. ferrea is rich in proteins and contains essential metabolites that contribute to its antimicrobial and antioxidant properties. When associated with probiotic bacteria such as B. velezensis, this extract increases the inhibition of SH, SG, SP, and APE. The nontoxic nature of EHMV and its protective effects on chicken embryos make it a potential supplement for poultry.