Vaccines (Apr 2022)
Complete (Humoral and Cellular) Response to Vaccination against COVID-19 in a Group of Healthcare Workers-Assessment of Factors Affecting Immunogenicity
Abstract
Vaccination is the best way to limit the extent of the COVID pandemic. Knowledge of the duration of the immune response will allow the planning of a vaccination protocol. This study aims to validate the complete (humoral and cellular) immune responses over time in large population groups following the full vaccination of healthcare professionals in real-life conditions and to assess the relationship between antibody levels and T-cell activity in relation to the characteristics of the study group. The samples for the study were obtained from volunteers (staff of two hospitals) on three occasions: before vaccination, T0, then 4–9 weeks after full vaccination (two doses BNT162b2), T1, and 7–9 months after vaccination, T2. The humoral response was investigated by the titre of anti-SARS-CoV-2 IgG antibodies to S1 protein. Assays were performed three times at intervals. The cellular response was assessed in a subgroup of 189 subjects by QuanT-Cell SARS-CoV-2 (IGRA). The assay was performed once. A group of 344 subjects fully vaccinated with the BNT162b2 vaccine were included in the study. The humoral response was observed in 100% of subjects at both 4–7 weeks and 7–9 months, but antibody titres fell by almost 90% in this interval. The cellular response was observed in 94% (177/189) of subjects 7–9 months after the second dose of vaccine. In subjects with a negative cellular response, eight out of 12 smoked. A factor associated with greater immunogenicity of vaccination was past SARS-CoV-2 infection. The administration of full BNT162b2 vaccination (two doses) induces humoral and cellular responses detectable even more than six months after vaccination. Smoking may be a factor associated with impaired cellular response to vaccination.
Keywords