Crystals (Mar 2024)

Optical and Optoelectrical Properties of Ternary Chalcogenide CuInS<sub>2</sub>/TiO<sub>2</sub> Nanocomposite Prepared by Mechanochemical Synthesis

  • Erika Dutkova,
  • Matej Baláž,
  • Jaroslav Kováč,
  • Nina Daneu,
  • Adelia Kashimbetova,
  • Jaroslav Briančin,
  • Jaroslav Kováč,
  • Soňa Kováčová,
  • Ladislav Čelko

DOI
https://doi.org/10.3390/cryst14040324
Journal volume & issue
Vol. 14, no. 4
p. 324

Abstract

Read online

In this work, a nanocomposite consisting of ternary chalcogenide CuInS2 and TiO2 was prepared and its optical and optoelectrical properties were investigated. The CuInS2/TiO2 nanocomposite was produced via one-step mechanochemical synthesis and characterized from the crystal structure, microstructural, morphology, surface, optical, and optoelectrical properties viewpoints. X-ray diffraction confirmed the presence of both components, CuInS2 and TiO2, in the nanocomposite and revealed a partial transformation of anatase to rutile. The presence of both components in the samples was also proven by Raman spectroscopy. HRTEM confirmed the nanocrystalline character of the samples as crystallites ranging from around 10 nm and up to a few tens of nanometers were found. The presence of the agglomerated nanoparticles into larger grains was proven by SEM. The measured optical properties of CuInS2, TiO2, and CuInS2/TiO2 nanocomposites demonstrate optical bandgaps of ~1.62 eV for CuInS2 and 3.26 eV for TiO2. The measurement of the optoelectrical properties showed that the presence of TiO2 in the CuInS2/TiO2 nanocomposite increased its conductivity and modified the photosensitivity depending on the ratio of the components. This study has demonstrated the possibility of preparing a CuInS2/TiO2 nanocomposite material with promising applications in optoelectronics in the visible region in an eco-friendly manner.

Keywords