Nanomaterials (Dec 2021)

Magnetic Structure and Origin of Insulating Behavior in the Ba<sub>2</sub>CuOsO<sub>6</sub> System, and the Role of A-Site Ionic Size in Its Bandgap Opening: Density Functional Theory Approaches

  • Taesu Park,
  • Wang Ro Lee,
  • Won-Joon Son,
  • Ji-Hoon Shim,
  • Changhoon Lee

DOI
https://doi.org/10.3390/nano12010144
Journal volume & issue
Vol. 12, no. 1
p. 144

Abstract

Read online

The magnetic structure and the origin of band gap opening for Ba2CuOsO6 were investigated by exploring the spin exchange interactions and employing the spin–orbit coupling effect. It revealed that the double-perovskite Ba2CuOsO6, composed of the 3d (Cu2+) and 5d (Os6+) transition metal magnetic ions is magnetic insulator. The magnetic susceptibilities of Ba2CuOsO6 obey the Curie–Weiss law, with an estimated Weiss temperature of −13.3 K, indicating AFM ordering. From the density functional theory approach, it is demonstrated that the spin exchange interaction between Cu ions plays a major role in exhibiting an antiferromagnetic behavior in the Ba2CuOsO6 system. An important factor to understand regarding the insulating behavior on Ba2CuOsO6 is the structural distortion shape of OsO6 octahedron, which should be closely connected with the ionic size of the A-site ion. Since the d-block of Os6+ (d2) ions of Ba2CuOsO6 is split into four states (xy 2–y2 2), the crucial key is separation of doubly degenerated xz and yz levels to describe the magnetic insulating states of Ba2CuOsO6. By orbital symmetry breaking, caused by the spin–orbit coupling, the t2g level of Os6+ (d2) ions is separated into three sublevels. Two electrons of Os6+ (d2) ions occupy two levels of the three spin–orbit-coupled levels. Since Ba2CuOsO6 is a strongly correlated system, and the Os atom belongs to the heavy element group, one speculates that it is necessary to take into account both electron correlation and the spin–orbit coupling effect in describing the magnetic insulating states of Ba2CuOsO6.

Keywords