Journal of Imaging (Aug 2021)

Automated Detection and Diagnosis of Diabetic Retinopathy: A Comprehensive Survey

  • Vasudevan Lakshminarayanan,
  • Hoda Kheradfallah,
  • Arya Sarkar,
  • Janarthanam Jothi Balaji

DOI
https://doi.org/10.3390/jimaging7090165
Journal volume & issue
Vol. 7, no. 9
p. 165

Abstract

Read online

Diabetic Retinopathy (DR) is a leading cause of vision loss in the world. In the past few years, artificial intelligence (AI) based approaches have been used to detect and grade DR. Early detection enables appropriate treatment and thus prevents vision loss. For this purpose, both fundus and optical coherence tomography (OCT) images are used to image the retina. Next, Deep-learning (DL)-/machine-learning (ML)-based approaches make it possible to extract features from the images and to detect the presence of DR, grade its severity and segment associated lesions. This review covers the literature dealing with AI approaches to DR such as ML and DL in classification and segmentation that have been published in the open literature within six years (2016–2021). In addition, a comprehensive list of available DR datasets is reported. This list was constructed using both the PICO (P-Patient, I-Intervention, C-Control, O-Outcome) and Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) 2009 search strategies. We summarize a total of 114 published articles which conformed to the scope of the review. In addition, a list of 43 major datasets is presented.

Keywords