PLoS ONE (Jan 2013)

Nicotine-induced expression of low-density lipoprotein receptor in oral epithelial cells.

  • Satoshi Ito,
  • Takahiro Gojoubori,
  • Kou Tsunoda,
  • Yoko Yamaguchi,
  • Masatake Asano,
  • Eiji Goke,
  • Ryosuke Koshi,
  • Naoyuki Sugano,
  • Naoto Yoshinuma,
  • Kazuo Komiyama,
  • Koichi Ito

DOI
https://doi.org/10.1371/journal.pone.0082563
Journal volume & issue
Vol. 8, no. 12
p. e82563

Abstract

Read online

BACKGROUND: Nicotine use is one of the most important risk factors for the development of cardiovascular and periodontal diseases. Numerous reports have suggested the possible contribution of disturbed lipid metabolism for the development of both disease groups. Despite these observations, little is known about the relationship between tobacco smoking and the development of these diseases. Our previous microarray data revealed that nicotine induced low-density lipoprotein receptor (LDLR) expression in oral epithelial cells (OECs). The aim of the present study was to confirm nicotine-mediated LDLR induction and to elucidate the signaling mechanisms leading to the augmented expression of LDLR in OECs. METHODS AND RESULTS: LDLR and nicotinic acetylcholine receptor (nAChR) subunit expression was detected by real-time PCR. The production of LDLR was demonstrated by immunofluorescence staining. nAChR-mediated LDLR induction was examined by pre-incubation of the cells with its specific inhibitor, α-bungarotoxin (α-BTX). The functional importance of transcription factor specific protein 1 (Sp1) was examined by luciferase assay, mithramycin pre-incubation or by small interfering RNA (siRNA) transfection. The specific binding of Sp1 to R3 region of LDLR 5'-untranslated region was demonstrated with electrophoretic mobility shift assay (EMSA) and streptavidin-agarose precipitation assay followed by western blotting. The results confirmed that nicotine induced LDLR expression at the transcriptional level. Nicotine was sensed by nAChR and the signal was transduced by Sp1 which bound to the R3 region of LDLR gene. Augmented production of LDLR in the gingival epithelial cells was further demonstrated by immunofluorescence staining using the gingival tissues obtained from the smoking patients. CONCLUSIONS: Taken together, the results suggested that nicotine might contribute to the development of both cardiovascular and periodontal diseases by inducing the LDLR in OECs thereby disturbing lipid metabolism.