HortTechnology (Mar 2019)

Yield, Quality, and Performance of Organic Sweetpotato Slips Grown in High Tunnel Compared with Open Field

  • Zachary N. Hoppenstedt ,
  • Jason J. Griffin,
  • Eleni D. Pliakoni ,
  • Cary L. Rivard

DOI
https://doi.org/10.21273/HORTTECH04139-18
Journal volume & issue
Vol. 29, no. 2
pp. 140 – 150

Abstract

Read online

Sweetpotatoes (Ipomoea batatas) are nutritious, easily stored, and well adapted to a variety of organic farming operations. This widely consumed root crop is propagated through the use of cuttings, known as slips. Slips are commercially grown primarily in the southeastern United States, and growers in the central United States still have limited access to sweetpotato planting material. Production of organic slips in high tunnels (HTs) could be a profitable enterprise for growers in the central United States given the season extension afforded by controlled-environment agriculture, which could allow growers to diversify their operations and facilitate crop rotation. In trials conducted in 2016 and 2017 at two research stations in northeast and south central Kansas, a systems comparison was used to evaluate the yield and performance of organic sweetpotato slips grown in HT as compared with the open field (OF), with four to six replications at each location. Propagation beds planted with ‘Beauregard’ seed roots in 2016 and ‘Orleans’ in 2017 were established in HT and OF under similar cultural methods and planting schedules. Slips were harvested from both treatment groups and transplanted to field plots to investigate the impact of production system on transplant establishment and storage root production. Slip yield from HT was greater than OF at both locations in 2016 (P ≤ 0.001), but this trend was inconsistent in 2017. Slips grown in HT were on average 12% less compact (slip dry weight per centimeter length) with fewer nodes than their OF counterparts in 2016. Nonetheless, mean comparisons for vine length, stem diameter, and total marketable storage root yield were not significant between HT and OF treatments (1.7 and 2.1 lb/plant, respectively). Similarly, the number of marketable storage roots for HT and OF groups was comparable (3.4 and 3.8 storage roots/plant, respectively). Although more research is needed to evaluate the feasibility of slips grown in HT and to determine recommendations for seed root planting densities, results from this study suggest that HT organic sweetpotato slip production could be a viable alternative to OF production as it relates to slip performance. According to this study, HT production could be a useful mechanism for growing sweetpotato slips, which could provide regional growers more control over planting material. Furthermore, HT slip production could promote the adoption of an underused vegetable crop that can be grown throughout many parts of the United States.

Keywords