PLoS ONE (Jan 2013)

Loss of p53 attenuates the contribution of IL-6 deletion on suppressed tumor progression and extended survival in Kras-driven murine lung cancer.

  • Xiaohong Tan,
  • Julian Carretero,
  • Zhao Chen,
  • Jishuai Zhang,
  • Yanxiao Wang,
  • Jicheng Chen,
  • Xiubin Li,
  • Hui Ye,
  • Chuanhao Tang,
  • Xuan Cheng,
  • Ning Hou,
  • Xiao Yang,
  • Kwok-Kin Wong

DOI
https://doi.org/10.1371/journal.pone.0080885
Journal volume & issue
Vol. 8, no. 11
p. e80885

Abstract

Read online

Interleukin-6 (IL-6) is involved in lung cancer tumorigenesis, tumor progression, metastasis, and drug resistance. Previous studies show that blockade of IL-6 signaling can inhibit tumor growth and increase drug sensitivity in mouse models. Clinical trials in non-small cell lung cancer (NSCLC) reveal that IL-6 targeted therapy relieves NSCLC-related anemia and cachexia, although other clinical effects require further study. We crossed IL-6(-/-) mice with Kras(G12D) mutant mice, which develop lung tumors after activation of mutant Kras(G12D), to investigate whether IL-6 inhibition contributes to tumor progression and survival time in vivo. Kras(G12D); IL-6(-/-) mice exhibited increased tumorigenesis, but slower tumor growth and longer survival, than Kras(G12D) mice. Further, in order to investigate whether IL-6 deletion contributes to suppression of lung cancer metastasis, we generated Kras(G12D); p53(flox/flox); IL-6(-/-) mice, which developed lung cancer with a trend for reduced metastases and longer survival than Kras(G12D); p53(flox/flox) mice. Tumors from Kras(G12D); IL-6(-/-) mice showed increased expression of TNFα and decreased expression of CCL-19, CCL-20 and phosphorylated STAT3(pSTAT3) than Kras(G12D) mice; however, these changes were not present between tumors from Kras(G12D); p53(flox/flox); IL-6(-/-) and Kras(G12D); p53(flox/flox) mice. Upregulation of pSTAT3 and phosphorylated AKT(pAKT) were observed in Kras(G12D) tumors with p53 deletion. Taken together, these results indicate that IL-6 deletion accelerates tumorigenesis but delays tumor progression and prolongs survival time in a Kras-driven mouse model of lung cancer. However, these effects can be attenuated by p53 deletion.