Mathematica Bohemica (Dec 2021)

On unit group of finite semisimple group algebras of non-metabelian groups up to order 72

  • Gaurav Mittal,
  • Rajendra Kumar Sharma

DOI
https://doi.org/10.21136/MB.2021.0116-19
Journal volume & issue
Vol. 146, no. 4
pp. 429 – 455

Abstract

Read online

We characterize the unit group of semisimple group algebras $\mathbb{F}_qG$ of some non-metabelian groups, where $F_q$ is a field with $q=p^k$ elements for $p$ prime and a positive integer $k$. In particular, we consider all 6 non-metabelian groups of order 48, the only non-metabelian group $((C_3\times C_3)\rtimes C_3)\rtimes C_2$ of order 54, and 7 non-metabelian groups of order 72. This completes the study of unit groups of semisimple group algebras for groups upto order 72.

Keywords