Frontiers in Aging Neuroscience (May 2021)

Dual-Phase β-Amyloid PET Captures Neuronal Injury and Amyloidosis in Corticobasal Syndrome

  • Julia Schmitt,
  • Carla Palleis,
  • Julia Sauerbeck,
  • Marcus Unterrainer,
  • Stefanie Harris,
  • Catharina Prix,
  • Endy Weidinger,
  • Sabrina Katzdobler,
  • Olivia Wagemann,
  • Adrian Danek,
  • Leonie Beyer,
  • Boris-Stephan Rauchmann,
  • Boris-Stephan Rauchmann,
  • Axel Rominger,
  • Axel Rominger,
  • Axel Rominger,
  • Mikael Simons,
  • Mikael Simons,
  • Mikael Simons,
  • Peter Bartenstein,
  • Peter Bartenstein,
  • Robert Perneczky,
  • Robert Perneczky,
  • Robert Perneczky,
  • Robert Perneczky,
  • Christian Haass,
  • Christian Haass,
  • Christian Haass,
  • Johannes Levin,
  • Johannes Levin,
  • Johannes Levin,
  • Günter U. Höglinger,
  • Günter U. Höglinger,
  • Günter U. Höglinger,
  • Matthias Brendel,
  • Matthias Brendel,
  • the German Imaging Initiative for Tauopathies (GII4T)

DOI
https://doi.org/10.3389/fnagi.2021.661284
Journal volume & issue
Vol. 13

Abstract

Read online

Objectives: In recent years several 18F-labeled amyloid PET (Aβ-PET) tracers have been developed and have obtained clinical approval. There is evidence that Aβ-PET perfusion can provide surrogate information about neuronal injury in neurodegenerative diseases when compared to conventional blood flow and glucose metabolism assessment. However, this paradigm has not yet been tested in neurodegenerative disorders with cortical and subcortical affection. Therefore, we investigated the performance of early acquisition 18F-flutemetamol Aβ-PET in comparison to 18F-fluorodeoxyglucose (FDG)-PET in corticobasal syndrome (CBS).Methods: Subjects with clinically possible or probable CBS were recruited within the prospective Activity of Cerebral Networks, Amyloid and Microglia in Aging and Alzheimer’s Disease (ActiGliA) observational study and all CBS cases with an available FDG-PET prior to Aβ-PET were selected. Aβ-PET was acquired 0–10 min p.i. (early-phase) and 90–110 min p.i. (late-phase) whereas FDG-PET was recorded statically from 30 to 50 min p.i. Semiquantitative regional values and asymmetry indices (AI) were compared between early-phase Aβ-PET and FDG-PET. Visual assessments of hypoperfusion and hypometabolism were compared between both methods. Late-phase Aβ-PET was evaluated visually for assessment of Aβ-positivity.Results: Among 20 evaluated patients with CBS, 5 were Aβ-positive. Early-phase Aβ-PET and FDG-PET SUVr correlated highly in cortical (mean R = 0.86, range 0.77–0.92) and subcortical brain regions (mean R = 0.84, range 0.79–0.90). Strong asymmetry was observed in FDG-PET for the motor cortex (mean |AI| = 2.9%), the parietal cortex (mean |AI| = 2.9%), and the thalamus (mean |AI| = 5.5%), correlating well with AI of early-phase Aβ-PET (mean R = 0.87, range 0.62–0.98). Visual assessments of hypoperfusion and hypometabolism were highly congruent.Conclusion: Early-phase Aβ-PET facilitates assessment of neuronal injury in CBS for cortical and subcortical areas. Known asymmetries in CBS are captured by this method, enabling assessment of Aβ-status and neuronal injury with a single radiation exposure at a single visit.

Keywords