AIP Advances (Mar 2017)
UVB-emitting InAlGaN multiple quantum well synthesized using plasma-assisted molecular beam epitaxy
Abstract
A high Al-content (y > 0.4) multi-quantum-well (MQW) structure with a quaternary InxAlyGa(1-x-y)N active layer was synthesized using plasma-assisted molecular beam epitaxy. The MQW structure exhibits strong carrier confinement and room temperature ultraviolet-B (UVB) photoluminescence an order of magnitude stronger than that of a reference InxAlyGa(1-x-y)N thin film with comparable composition and thickness. The samples were characterized using spectroscopic ellipsometry, atomic force microscopy, and high-resolution X-ray diffraction. Numerical simulations suggest that the UVB emission efficiency is limited by dislocation-related non-radiative recombination centers in the MQW and at the MQW - buffer interface. Emission efficiency can be significantly improved by reducing the dislocation density from 109cm−2 to 107cm−2 and by optimizing the width and depth of the quantum wells.