Journal of Astronomy and Space Sciences (Mar 2016)

Improved GPS-based Satellite Relative Navigation Using Femtosecond Laser Relative Distance Measurements

  • Hyungjik Oh,
  • Han-Earl Park,
  • Kwangwon Lee,
  • Sang-Young Park,
  • Chandeok Park

DOI
https://doi.org/10.5140/JASS.2016.33.1.45
Journal volume & issue
Vol. 33, no. 1
pp. 45 – 54

Abstract

Read online

This study developed an approach for improving Carrier-phase Differential Global Positioning System (CDGPS) based realtime satellite relative navigation by applying laser baseline measurement data. The robustness against the space operational environment was considered, and a Synthetic Wavelength Interferometer (SWI) algorithm based on a femtosecond laser measurement model was developed. The phase differences between two laser wavelengths were combined to measure precise distance. Generated laser data were used to improve estimation accuracy for the float ambiguity of CDGPS data. Relative navigation simulations in real-time were performed using the extended Kalman filter algorithm. The GPS and laser-combined relative navigation accuracy was compared with GPS-only relative navigation solutions to determine the impact of laser data on relative navigation. In numerical simulations, the success rate of integer ambiguity resolution increased when laser data was added to GPS data. The relative navigational errors also improved five-fold and two-fold, relative to the GPS-only error, for 250 m and 5 km initial relative distances, respectively. The methodology developed in this study is suitable for application to future satellite formation-flying missions.

Keywords